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NOTATION
Attenuation
R, P/p %,
b(v)%/2 is Rayleigh’s dissipation function
Dissipation coefficient
Ceneralized driving function
Velocity of sound
Thermal diffusivity
Thickness of bubble screen

Incident sound energy

Reflected sound energy
Characteristic frequency of the gas bubble

Minnaert’s resonant frequency
Resonant frequency

Universal gas constant

A factor which takes into account the effect of surface tension

Height above the bubble producers

Idem factor

Thermal conductivity

Restoring stiffness

Lagrangian function

Mass of the gas contained in the volume v’
Mass of the gas in the bubble

Generalized mass
Average number of bubbles per unit volume

Complex amplitude of sinusoidal prossure »*

Instantaneous pressure on the bubble surface
Pressure inside the bubble

Static pressure



Instantaneous pressure in the undisturbed liquid

Sinusoidal pressure on the liquid surface
Sinusoidal pressure on the bubble surface

Acoustic pressure on the bubble surface
Incident sound pressure
Reflected sound pressure

Number of cycles required for the amplitude of motion to reduce to ¢™7 of its
original value

Amount of heat energy transfarred

Radial distance

Nonresonant bubble radius

Mean bubble radius

Instantaneous bubble radius

Change in radius from the moan bubble radius
Net stress dyadic

Specific heat at constant pressure
Specific heat at constant volume

Absclute temperature
Equilibrium absolute temperature
Time

Internal energy

Equilibrium bubble volume
Instantaneous bubble volume

Change in volume from the equilibrium bubble volume

Infinitesimal element of volume in the gas bubble

Work done on the bubble

Rate of pure strain dyadic

Change in temperature of the gas as a function of tho bubble radius
Tube radius

A factor which describes the departure of the bubble stiffness from the adiabatic
stiffness
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Ratio of specific heats
1/Q , the damping constant

Resonant damping constant

Angle between the incident sound ray and the normal to the bubble screen
Polytropic exponent

Change in temperature from the equilibrium temperature
Natural logarithmic decrement

Wavelength

Coefficient of viscosity

Density

Surface tension

(w/2D)%
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Velocity potontial

Circular frequency



ABSTRACT

\ theoretical discussion of thermal, radiation, and viscous damping for
re<onant air bubbles in water i~ presented. \n error in the derivation by Plriem
for the thermal damping constant is corrected, The experimental results verify
thzi the damping constant at resonance is the sum of the thermal and radiation

damping, and possibly vizcous damping.

INTRODUCTION

The earliest reference to bubbles as sound sources was made by Bragg,! who attributed
to entrained air bubbles the murmuring of a brook and the “*plunk’’ of droplets falling into water.
Minnaert® has since shown that the sound generated by gas bubbles in liquids i associated
with simple volume pulsations of the bubble without change of shape. The bubble behaves as
a simple damped oscillating system with one degree of freedom. Therefore, the differential
equation of motion for the bubble system has the same form as the second-order linear differ-
ential equation for & mass fastened to a spring. \As the bubble periodically expands and con-
tracts, the surrounding liquid is the inert mass which is set into vibration, while the stiffness
is due to the gas in the bubble, This zero-otder radiator has a sharply defined rezonance at
the {requency:

_L [0 (1)
/M—SHRO pz

ahere 2 s the mean radius of the bubble,
P, is the static pressure at which the bubble has the mean radius /2,
y is the ratio of the specific heats of the gas enclosed in the bubble, and

p, is the density of the liquid. (In this report a subscript 1 will refer to properties of
the gas while subscript 2 will refer to those properties of the liquid.)

Equation [1] will be derived later on page 5. This resonant {requency derived by Minnaert
assumes an adiabatic equation of state for the gas in the bubble.

The volume pulsation frequency of nonspherical gas bubbles in liquids has been con-
-ilere by Strasberg,® who used oblate spheroids to approximate the nonspherical shapes.
This determination indicates that the frequency is only slizht'y dependent upon the ratio of
the major to the minor axis of the spheroid. In fact, for a ratio of two, the volume pulsation
frequency of an oblate spheroid differs by only 2 percent from that of a sphere with the same
volume, Observations have shown that large bubbles are generally nonspherical wheoreas very
small bubbles tend te he spherical.

lm-f(-n-m-v< ate listed on page 34.



In addition to <imple volume pulsecions, there also may be osciilations in the shape of
the bubble. The natural frequency for the highermodes of shape o=cillation has been calculated
by Lamb;? Strasberg® has used this analysis to demonstrate that shape oscillations do not seem
to result in significant sound pressures except perhaps very close to the bubble. Physically,
the case of a quadrupole demonstrates the reason for the feeble sound. The quadrupole repre-
sents two sets of sources and sinks for sound on the bubble surface. The distance between
each source and sink is very small compared to the wavelength of the sound; therefore, on the
bubble surface, alrmost all the sound from the source is fed back into the sink. The result is
that, away from the bubble, only insignificant sound pressures occur.

The sound pressure resulting from excitation of volume pulsations by several mechanisms
has recently been discussed in the literature.® The mechanisms, which cause bubbles to pul-
sate and radiate sound, are bubble formation, coalescence, or division; the motion of a free
stream of liquid containing entrained gas bubbles past an obstacle, or the flow of liquid con-
taining entrained bubbles through a pipe past a constriction; and an incident sound wave,

Experiments conducted by Sorensen’ showed that liquids containing a gas possess
higher sound damping characteristics than do these which are gas-free. Just a few widely
dispersed bubbles which are so small as to be invisibie can have an appreciable acoustic
effoct. When a large number of these small bubbles are present, the liquid will be nearly opaque
acoustically. Small impurities in liquids, such as suspended particles, have negligible in-
fluenco in compatison with the damping increase due to bubble-. Therefore, bubbles have a
considerable importance in the transmission of underwater sound. In order to understand the
attenuation of sound by gas bubbles in liquids, fundamental processes by which pulaating
bubbles dissipate their energy must be known. This report will investigate the portion of the
enorgy radiated in the form of spherical sound waves, the part which is transformed into heat
during the polytropic compressions and expansions of the enclosed gas, and the part of the
energy lost in viscous dissipation. Ii may be that these three processes completely account
for tho total damping of gas bubbles in liquids.

THEORY

Periodic onforced changes in the pressure on a bubble result in volume pulsations of the
bubble. If the amplitude of the volume oscillation is small, the motion of the bubble system is
described by a socond-order linear differentia! equation. Fer this svstem possessing one degree
of froedom, the condition of the bubble system is defined by the change in volume v from the
equilibrium volume V, . The instantaneous volume V; of the bubble is the algebraic sum of the
meoan volume V, and v, In a similar manner, the instantanoous radius /2, of tho bubble is the
algebraic sum of the mean radius 2, and the radial increment r. The bubble is assumed to be
in an incompressible liquid; at the surface of the liquid, a sinusoidal pressure p is applied:

p= Pef“" [2]

W



where P i~ a constant. Liquids are slightly compressible, but, as long as the bubble size is
small compared to the wavelength of the pressure wave, the liquid 15 considered incompress-
thle.® The instantanecus pressure P, in the undisturbed liquid is the sum of the sinusoidal
pressure P ef®* and the static pressure Py:

Py = Pei®t s Py [3)

"lowever, at the bubble surface, the instantaneous pressure ) is the instantancous pressure

P, 1n the undisturbed liquid minus the inertial reaction of the liquid in motion about the bubble.
For the moment, until the inertial reaction of the liquid is determined, the instantaneous pres-
sure I'% at the bubble surface is defined as the sum of the sinusoidal pressure p”and the
static pressure Py :

Py=p'+ By=Pel% 4 py (4

where %15 the complex amplitude of the driving pressure p°. The bubble, which is in this
uniform but alternating pressure field, cannot be in equilibrium with this oscillating pressure
unfess the bubble itself is pulsating. Uniform pressure in the gas bubble implies that the
inertia of the gas is negligible. The liquid surrounding the bubble provides ihe inertia for the
bubble system. The equation of motion for the bubble system is derived in terms of generalized
coordinates by using Lagrange’s equations. When there are no dissipation or forcing pressures
present, Lagrange’s equations are written in terms of the Lagrangian function L, which is de-
fined as the kinetic energy minus the potential energy of the system:

d(aL) alL 0 (5]
de\av] odv

\hen dissipation is present, the dissipation pressure is assumed to be proportional to the
bubble volume velocity . Dissipation of this type may be derived in terms of a function B,
known as Rayleigh’s dissipation function, and defined as®

2
=20

(6]

&

where b is the dissipation coefficient. The equation of motion for the bubble system when
there are dissipation and a generalized driving function C, where neither arises from a poten-

tial, is
i(i’_’;)__‘iﬁ L 7]
dt\ v dv  dv

The potential energy nf the bubble system is obtained by assuming that the gas in the bubble
undergoes an adiabatic process during the volume pulsations of the bubble:




I,:"‘l‘ - [’o Vo} (8}

. 343
APy = —— ¥, or [9]
Yo
i)
I)’ l) “[0 H
y =1y = ...—.— r [10]
Yo
Therefore, the potential energy is
v ﬂ% ,
. ye
P."..:-J‘ ”2— 0)(111:2‘—’1: [11]
o 0

\s the bubble periodically expands and contracts, the surrounding liquid is set into
vibration. The maximam kinetic energy of the liquid particles occurs at the moment the bubble
has agzain cecovered its equilibrium volume V. The flow of the liquid is irrotational: therefore,
a velocity potential exists. The velocity potential of a liquid particle at a distance R, due to

a simple source, in a liquid at rest at infinity, is!®
s (12}
inl
and the velocity of this liquid particle is
. v
R=-9Q= [13]
47 R2

The kinetic energy of all the liquid volume elements of density p, is

] ~° .
K.E. =Tf (Y2 4qRR%dR {14]
RO

The integration_ix extended to infinity because the bubble is assumed to be surrounded by a

very large liquid volume. Upon integration, the above expression yields the kinetic energy as

o

K.E. = ()2 (1%
aly
\ccordingly, the Lagrangian L 1s
)
ST yly o
L = (1,)2 . l.'..’, [ 18]



and the equation of motion for the hubble -vatem, when a sinusoidal pressure P e/ is apphed

at the surface cf the liquid and dizsipation 1s present, i~

P L' .
e hy . - v == Pel (17}
183 1 .2
" “0 l:'_l‘.ow

The forcing function P e/ is preceded by a minus sign as a decrease in pressure results in
an increase in the bunble volume. The term p, 1z X is the zeneralized mass my of the bubble
~ystem. The stiffness of the bubble system is defined as the change in pressure on the bubble
surface associated with the changz in bubble volume: thereiore, the term yl’o 'Vo 15 the adia-

vatie stiffness &
kyy=—— (18]

Therefore, the linear second-order differential equation of motion for the bubble system is
written as

My + b0+ kg v =~ Pel®! [19)

V'en the hubble i~ ~lightly nonspherical, each term 1n Equation {19] is nearly mdependent of
~hape when the mean radius # is taken as the radius of a sphere of the same volume,!!

Tran<ient volume pulsations are given by the solution of Equation [19) when the right side of
the equation is ~et equal to zero. Turthermore, if the dissipation is neglizible, l.quation [19]

becomes
Wil v = D)
ny e kgt 0 120}

and the resonant {requency of the bubble system is

ol a1 [Ph (211
1737\, 27BN o, "

which is Minnaert’s exvression as given in Equation [1] on page 1.

When the right side of Equation [19] is zero, i.c., the driving pressure has been removed,
the ~ound pulwe from the bubble consists of a damped exponential sinusoidal oscillation. The
number of ¢ycles required for the amplitude of motion to reduce to e~ 7 of its original value is
the ¢ of the bubble system, When the dissipation is small, the difference between the frequency
of the oscillation and the resonant frequency of the bubble sy.-tem without dissipation 1o neg-
lizible: the © of the bubble system is expressed as

2n [y,

.2 22!
b




ahere f, is the resonant frequency. The ¢ may also be defined for a drives system as

0nl
| T e———— l23l
/2‘/1

where /, and {, are the two frequencies respectively above and below resonance at which the
average sound power of the bubble has dropped to one-half its resonance value.!2 The total
damping constant 8 is now defined as the reciprocal @ of the bubble system or ™ ! times the
natural logarittaic decrement A:

5= {24)

A
n

Sl

In this report, the damping constant in all cases will refer to the reciprocal @ of the bubble.

The total damping may be explained by losses originating from three processes:

1. Thermal damping 8,, due to the thermal conduction betwesn the gas in the buible and
the surrounding liquid.
2. Sound radiation damping 5, ,.

3. Viscous damping 8,  due to viscous forces at the gas-liquid interface.

The total damping, expressed as the sum of these three processes, is

=b= sth + 6md + avis [25]

|~

THERMAL DAMPING

In the derivation of Equation (1] for the resonant frequency, the adiabatic equation of
state was assumed. The pressure and volume changes are in phase with ona another so that
dr e, equals ~ydV,/V,. For the adiabatic case, there is no transfer of heat. In the other
limiting case of a purely isothermal process in the gas space, the pressure and volumo chengos
are again in phase; dP;/P, cquals ~dV;/V,. For this case, thore is just as much heat flow-
ing outward from the bubble during compression as flows inward during expansion. The work
done by the driving pressure in compressing the gas space is just equal to the work done by
the oxpanding gas in moving the surrounding liquid. However, for the case of a real bubble,
the gas in contact with the liquid closely follows the isothermal equation of state since the
liquid has a large specific heat and thermal conductivity. In the center of a real bubble away
from a substance having a high specific heat, the gas nes«ly follows an adiabatic equation of
state. Therefore, the thermal process is polytropic for a real bubble, and a phase difference
exists between the increase in pressure per unit original pressure and the decrease in volume
per unit original volume. This phase difference causes a hysieresis effect. 'The work done
on the gas volume by the driving pressure during compression is more than the work done by




s s <pacein soving the ~urrounding liquid dunng expansion. This difference in the work
done represents a net flow of heat into the liquud. The net flow ¢ neat into the liquid 1=
characterized by the thermal damping constant.

The subject of thermal damping has been 1nvestizated independently by Pfriem,*3
Vallis, !4 and Saneyost,?® and all have obtained similar results. The results of both Willis and
Saneyosi are avatlable, but unfortunately their derivations are not easily accessible. There-
iore, the derivation as outlined by Pfriem will be foilowed.

In derivinz the expression for the thermal damping constant, the gas bubble is assumed
to be 1n an incompressible hquid, and is excited to volume pulsations by a sinusoidal pressure
P! appiied at the surface of the bubble. The liquid has a large specific heat and thermal
conductivity, and behaves as a heat reservoir. This very large mass of liquid is capable of
absorbing or rejecting an unlimited supply of heat without suffering appreciable changes in its
temperature. Consequently, in the liquid adjacent to the gas-liGuid interface, it will he assnumed
that there are no changes in temperature. A temperature {ield in the gas will be found that
-atisfies this condition, and, the second condition, that the temperature in the center of the
hubble is finite. The oscillations in the pressure, volume, and temperature of the gas in the
huhble will be assumed small. Consequently, the equations relating these three thermodynamic
coordinates are linear. In addition, the density and the specific heats of the gas are regarded
as constant. In the gas, the pressure is not a function of position but only of time. Therefore,
the gas is in a uniform but alternating pressure field; the inertia of the gas in the bubble is
negligible. The heat transfer process is conduction. Convection is unimportant as the time
factor for e~tablishment of this process is considerably larger than the time consumed during
a half-cyele compression of the bubble.

In the subsequent discussion, the thermal damping constant is found by first finding an
evpression for the change in bubble voiume ». Duringz a compression of the bubble by the
forcing pressure P el ot applied at the surface of the bubble, work i~ done on an infinitesimal
element of volume in the gas. The internal energy of the gas in this volume element is in-
creased, znd there is a flow of heat from this volume. A differential equation for consorvation
of energy is formed, and the solution of this equation, subject to boundary conditions, yiclds
the temperature field for all points n the gas space. Since the temperature field is known,
the change in bubble volume v is calculated for a change ia the temperature and a change in
the driving pressure at the bubble surface. The expression for the change in bubble volume
i~ then substituted into the differential equation of motion for the total gas space within the
bubble. This operation yields the thermal damping constant and the stifiness of the gas.
Finally, the thermal damping constant is deiermined as a function of the resonant frequency
of the bubble system.

In order to calculate the thermal contributions to the total damping of the bubble system,
the change 1n bubble volume must first be determined. When the driving pressuro at the bubble

surface compresses the bubble, work is done on the gas space. This work done on the gas




space increases the internal eneryy of the gas, and also results in a trans{er of heat energy
through the gas. The added heat is transferred by conductiun fr.p the gas bubble into the
surrounding liquid. The compression process must obey the conservation of energy principle

as stated in the first law of thermodynamics:
AL =Age AW (26]

where \U' is the increase in internal energy of the gas space, \7 is the heat added to the gas
srace, and \W is the work done on the gas space. \hen each term in Iquation {26] is divided
by an infinitesimal time A¢ and A¢ is allowed to approach zero as a limit, the rate of increase
in internal energy is given as

d_lj:‘.r_.q‘.z[_‘i [27]

(\ line drawn through the differential sign indicates an inexact differential.) At s point in the
gas space, the rate at which work is done per unit volume by the driving pressure on an infin-
itesimal element of volume 27 of the gas is

e g Py oan’
——— — (28]

Since the volume Jdecreases during compression, the term on the right side of Equation {28] 1~
preceded by a mius sign as the rate of work done per unit volume is positive. For this small

elerent of volume at a point, the rate of increase in internal energy per unit volume is

dU d0,

— 3 = —
a P10 g
where ~  is the specific heat of the gas at constant volume, and 0, is the change in gas tem-
1

periture from the equilibrium absolute temparature T,. The rate of transfer of heat energy per
unit volsme for an infinitesimal volume at a point as a result of conduction 1s proportional to
the diversence of the temperature gradient; the proportionality constant 1s the thermal conduc-
tivity Ay of the gu

ey

K

A (30)
o

Since the temperature 15 a function of time and radial distance, (quation [30] 1~ rewritten as

> »
anr Ry (1N
—== 5 T [31)
at I ”‘[‘»2
where the spherical coordinate <y stem originate~ at the center of the hubble. When the ex-

pressions for the rate of inerease in internal energy per uint volure .t point, the rate at




which heat 1~ added per unit volume at a point, and the 2 te of work done per unit volume at
4 point are substituted into Lquation [27], the differential equatica for the temperature field

within the gas space is obtained:
nysg, QRO Ky RO P] 5. [
= — ———— 32}
R i Iig a2 v’ at

v

\ substitution can be made for the second term on the right side of the above equation by con-

sidering the ideal gas equation:
l’év'zm'G(To+ 01) [33)
vhere #%1s the mass of the gas contained in the volume element v/ and G is the universal
#as constant. Equation {33} may be differentiated with respect to time to yield:
, v’ mg ORE) ar;, "
2 ny v .2 34
9 R & at
or

P35 apr PG RO OP; -
v a R 9 at

As the universal zas constant G is the specific heat at constant pressure, 8p minus the

specific heat at constant volume and t
1)2' = 1)0 + I) 'e[wl, [4]
Equation {35] may be written as
PL g P1%p a(RO) P18vy (RR0))
2 dv - _ i&)I’ ;e;wl [36]

P T Y R ot

Consequently, when this expression is introduced into Equation {32], the differential equation
becomes
aRO) Ky (RO ol

+] P’el®t (37)
a P18, K2 PySp

Lquation [37] is a linear differential equation Jescribing the temperature field within the gas
bubble. The term h’l ,'p‘Sp is a parameter of the gas which Kelvin called the thermal dif-
fusivity ), of the gas. Thermal diffusivity is a measure of the rate of heat propogation due
to the thermal conduction. .\ solution of this differential equation for the temperature field
inside the gas bubble must satisfy certain boundary conditions. \t the center of the hubole,




the change in temperature | must " = finite, and the gradient of the change in temperature must
he zero. Finally, the change in temperature must be zero at the pas-liquid interface and the
aradient of the change in temperature must be finite. The solution of Lquation (37] may be
obtained by several method<. One method is to assume that the change in temperature 0,1s

0y =yel! (38)

where y is a function of # oaly.* Therefore, Equation [37) becomes

? wkP’
jolRy) =D, — (Ry) + § - (391
(9/.)2 01 sp
1
\ possible solution of Equation [39] is
K sinh Y1 ¥ i
Ry=a, : i40)

R, sinhy, R,

Differentiation and substitution of this expression in Equation [39) shows that it is a solution
if we identify a, with

TN

a, =

1
plsPl

and ¢, with

w w
1= V15
ny

Equation {40] is a solution for the temperature field providing the boundary conditions are
satisfied. When R equals the mean bubble radius R4, Equation (40] becomes

’?0]/=0, y=0 (41)

and the gradient of y is finite:

*It 18 evident that Equation [38] 1s not an exact solution of the physical nroblem, although it satisfies all the
conditions of the mathematical equations. The physical reasoning indicate s that the mean temperature inside the
bubble must increase toward the center of the bubble, Iovever, accor.ing to Equation [38], at the bubbie surface.
the temperature gradient 1s (dy/dR)e’“", with a time average value of z2ro, whereas 1ts time average value should
be negative for a net outward flow of heat. This discrepancy comes about 1n neglecting certain second-order terms
in order to obtain a d:fferential equation with linear coefficients, and then in assuming that 01 and ¥ are sinusoidal.
The need for an increase in the mean value of ()‘ indicates also the exiatence of higher even harmenics. However,
the subsequent treatment of the solution of Equnuon[38! leads to results that are quite good. It 1s possible to go
back and correct the equations by *he method of successive approximations.

10




Iy 41
— = | ==, coth l"lI{O {42
E I A

When £ is very small, Ry is

R ud -___d”k 143]
1= LFO " Sinh v, Ry

Consequently, when  is zero, y is finite:

yea, | Lo (44]
Vi#ry sinhy Ry

and the gradient of y is

DR
<
n
=

{45]

W
<

Therefore, the boundary conditions are satisfied; the temperature field within the whole gas
space is now known, The change in bubble volume v can now be determined for a change in
the driving pressure at the bubble surface and a change in the temperature @,. The total
rhange in volume of the uas space is the sum of the changes in volume of all concentric shells
whose radius is R and thickness dR. A shell of thickness dR has a volume;

vy =4 7 RTdR (46

In accordance with the ideal gas law, two different states of the gas are expressed as

D
Po vy

(47)

where T is the absoluto temperature of the compressed gas. ‘When Equation [47] is differen-
tiated, the rosult is

v v
0
dv === dT ~— dP’; (48]
TO IO
Since
dT =0 = yel®* (38)

1




and

PL=n - pletor, (4]
ilquation [ 18] i< rewntten as
[‘,2: -:21)'
de = 4 7 el0f [ .J - l_’._]dlf L19)
0 o

The expression for ft2y 1< obtained from Lquation [10):

’1,01)' I sinh (’Ix R
fey - 2. Sinho.R el
3 £inh v
P19 1% Yy lte
Therefore, the total change in the bubble volume is
&)
3 iwtj b [Rz g St ://,If'l PR e s
v= e > 5 T 07 -~ |- 5
i o pl“pl Ty lo sinh ¢ Ry} Py ‘ 0
or )
Ve Jwt P15, Ty
v = - - [(w Ry coth ¢y Ry) - 1] (51)
; > 1"%o 1'%
nlspl Ty Py Ly,]l’[go2

Lquation {51] is further simplified by noting that

r Fo %o FoVo Py
0= = =
mG ml(spl-sul) pl(spl'sv,)
thorefore,
VPl ot
0 I(y-1
I 1.3 )[('y’ll"’o coth ¢, Ry) - 1] {52]
P 22
Yo L wy [t’o
or

v Vo=V P-4 3(y - 1)
= 1+

Yo Vo ylq v2IR?

[(w, Ry coth iy Ro) ~ 1] (53)

Vhen the change in volume per unit original volume (V, - V) / ¥y is plotted against the change
In pressure por unit original pressure (P - Pg), Py on a pressure-volunie graph for the real
components of Equation [53], the area enclosed by the compression and expansion curves
represents the net loss of energy by heat conduction. The work done in compressing the gas
bubble is more than the work done by the gas in exnanding. The change in bubble volume is

12




o

now known. There remains now the task o relating the change in the bubbie volume and the
assumed harmonic excitation pressure at the surface of the bubble to the vibrational properties
of the gas bubble; i.e., the stiffness and damping attributes.

In order to determine the stiffness and damping, the differential equation of motion for
the bubble system, which was given in Equation [19] on page 5, is considerad:

M)V + by, 9+ kv =~ P el®* (19

where b, is the thermal dissipation coefficient and the sinusoidal forcing pressure P et

is applied at the surface of the liquid. Since the inertia of the gas in the bubble is negligible,
Equation [19) can be rewritten for the differential equation of motion for the total gas space in
the bubble:

by D+ kv == (P et + myB )= - preiwt [54)

where P /%% is the sinusoidal excitation pressure at the surface of the bubble. When the

expression for the change in bubble volume v:

@t

WP [ -1

ve-—p— {1+
vie;

(o424 coth v, 2,)- 1]} (52)

is differentiated and substituted into Equation [54], the following expression is obtained:

1 14 -
a— {1 36-1 [(./,lko coth ¢, Ry) - 1]} {55

_— +
E+joby vPo y2RrE L

Since the parameter ¢r; has the symbol j under the square root, which is undesirable, and there
is the need to separate Equation (55] into real and imaginary components, a substitution for
¥y is introduced:

. ]
vi=(+ Y of =25 =i -
1

@

Y=L+ gy =(14+)) o,

Accordingly, the parameter gSlh’o is

pE—
- ”Plspl/
$1Ro =1y 27)1=Ro K

When the frequency and the radius of the bubble are kept constant, the quantity ¢, /%, varies
as the square root of the density of the gas, or alternatively as the square root of the average

13



vre-~ure in~ide the bubble ~ince the ~pecific heat at constant pressure and the thermal con-
ductvity are independent of density:

Sy Re~Vo v Py
(0, R, are constant)
0

Another condition exists for ¢y By when the excitation frequency is constant and the radius of
the bubble satisfies Equation (1]:

1, /3%
Ry = —\— (1)
oyt Py

for a resonant bubble. Then for the resonant case, the parameter b Ro varies as the average
pressure inside the bubble:

$y g ~Py

(0 = wy = constant)

By introducing the substitution for ¢, and noting the identities:
sinh (6,8 + jo Ry) = sinh (&, ) cos (¢41%,) + j cosh (&, By) sin (65, %)

cosh (¢, Ry + jRy) = cosh ($, Ry) cos ($,8y) + j sinh (&,R) sin (6, Ro)
Equation [55] becomes

k-jwb, Ve 3(y ~ 1) [ sinh (24,8) ~ sin (26, 7))
. 1
¥ 38, Rg L cosh (26 12g) - win (25,7 g)

P
R+ (b )2 0

sinh (26, Ro) + sin (2, R)) 4
iy - 56
" \cosh (26, Ro) - cos (26,5) &, g ] (561

Lven though Equation [56) is separated into real and imaginary terms, the form is still not

suitable for determing the thermal damping constant at resonance. In Equation [22]:

b!h

1. ) (22]
Quw, ©omy

the thermal dnmpi.ng constant is given in terms of the thermal dissipation coefficient &, ,
resonant circular frequency wg , and the generalized mass m, . However, the generalized
mass is simply the stiffness & divided by the square of the resonant circular frequency.
Therefore, the dimensionless thermal dumping constant, which at resonance is the reciprocal

14



2 or =~} timex the natural logarithmic decrement, is wb,.'k. Atresonance, the maximum value
of the thermal damping constant is about one-tenth: thereforu, \f_-.’:m,’/fc)2 is very small and can
be neglected with respect to unity:

1 .wbth

1 ( .("bth) Vo 3(y - 1)<sinh (25,R4) - sin (2¢,R)
E\ 7P, |M* 58k, \cosh (23, 7) = cos (33,79)

sinh (26, R ) + sin (26, R,) 1

cosh (2, Ro) - cos (26,R9) ¢k,
96,R,  sinh (26,10) - sin (26,%,) | | 158
iy -1 ¥ cosh (26 Ry) - cos (2¢ /)

1-j

—

Therefore, the dimensionless thermal damping constant is

sinh (2¢ 1f2¢) + sin (26, R,) 1
wby, |cosh (26,8, - cos (26,Ry)  &,R, 50
= 59
ko |28,Ry sinh (26,R,) - sin (26,R,)

3y - 1) " cosh (26 ,/29) - cos (26 Rg)

For large values of 2¢ R, i.e., equal to or greater than 5, the thermal damping constant is
given to within 1 percent by

1
1~
wbyy, $1fo 3y -1) (60]
ko 2,k 2R,
14—
(y-1

Large values of 28,1/, correspond to large bubbles or the adiabatic case. The dissipation
arising from heat conduction vanishes. The thermal damping constant for very small values of
26, R, i.e., equal to or less than 2, is given to within 1 percent by

15




©bun _(y - 1) @y’

- y m {61l

Very smzll values of 26, R,, correspond to small bubbles «r the isothermal cese, and again
dissipation arising from heat conduction vanishes. The amount of heat that flows from the
gas space into tho liquid during compression is just equal to the amount that flows from the
tiquid into the gas during expansion; the net flow of heat is zero. However, there is a transi-
tion region between small and large values of 26, where the thermal dissipation is a maxi-
mum. In this transition region, the relation between the pressure and the total gas volume can
be oxpressed as Pj V1 equals a constant, where the exponent » varies from unity to y; the
state is polytropic. Figure 1, a plot of the thermal damping constant w by, / k vs 2,R, ,
clearly illustrates this transition region between isothermsl and adiabatic states.

The stiffness of gas bubbles is also important since the resonant frequency fox the
bubble system is directly proportional to the square root of the restoring stiffness. By com-
paring the real terms on both sides of Equation [56], the stiffness is expressed as

KV,

}’po X ('J bth)2} A 3()’ _ 1)(sinh (2@5180) - sin (2¢1R0) ) [621
+H—— +
k 2¢ Ry \cosh (24 B() - cos (24, R)
For large values of 2¢ 8, , i.e., for large bubbles and the stiffness approaching the adiabatic
stiffnoss, the dimensionless stiffness &V,/yP, is given to within one porcent by

1

kudvb 1

Po [ 30r-1D 3(y-1>)
1
{" 26 Ry (“ 26, R, }

Q12— ——— - e - e e

N

004 . - - -1
isothermal Adiabotic »

|
| / i |
; |
! '

I

(83)

008 /

Figure 1 — Thermal Uamping Constant versus
Dimensionless Parameter 2,1,

“recmgr Domping Constont wb,, /h
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{ciem, due to an oversight, used only the first power of wb,,. 'k in obtaining Equation (63],
and, therefore, derived the erroneous result:

kadVo 1

=~ — {641
> -
YPo 1+ (y-1) (1 _ 1 )
é,R N,

for the dimensionless stiffness. The stiffness as given by Equation [63] is used to determine
the thermal demping constant at resonance. Therefore, the result obtained by Pfriem yields an
incorrect thermal damping constant at resonance. For small values of 24, R, i.e., for small
hubbles and the stiffness approaching the isothermal stiffness, the dimensionicss stiffness

is given to within one percent by

%i50V0 1

vPo (%130)4( 2.1(y—1)2)
Y- T

When the dimensionless stiffness kV, / yP, is plotted as a function of 25,2, as in Figure 2,
the dimensionless stiffnoss approaches y~! for small values of 26, and approaches unity

for large values of 2¢,R,. The restoring stiffness of the gas and the thermal damping constant
are now known. The only rei ‘ining task is to introduce the correct expression for the stiff-
ness into the equation for the resonant frequency, and then determine the thermal damping con-
stant §,, at resonance.

65]

The correct expression for the stiffness will now be introduced into the equation for
the resonant frequency. Minnaert derived the equation for the resonant frequency oi pulsating
gas bubbles in liquids by considering an adiabatic equation of state:

09

Adwabatic =

o8

Figure 2 — Dimensionless Stiffness versus
Dimensionless Parameter 26,12,

lsolne,y
|
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However, the state is poiytropic; the stiffness constant & for large be.bbles, which is of prac-

tical importance in discussing underwater sound transmission, is given by Lquation [63].

by vh 1 -l
k D —— T —
A VO . 3(y - 1) ( . 3(y - 1)) {63a)
26,8, 20,k
nFy vPe
kom——— (s8]
Vo Voo

where

Y 3(y - 1)( 3y - 1))
a=— =14+ +
n 26,12, 28 R,

The factor e describes the departure of the bubble stiffness from the adiabatic stiffness. Con-

1 /30 Iy
f= —_ [67)
2a2R,Y pra va

[} 2

sequently, Equation {1] becomes

In the discussion so far, the instantaneous pressure inside the bubble has been considered the
same as the instantaneous pressure on the surface of the bubble. However, when the bubble
is small, the surface tension pressure increases the pressure inside the bubble; consequently,
the instantaneous pressure inside the bubble is greater than the instantaneous pressure on the
bubble surface. Smith;16 Briggs, Johnson, and Mason;17 Spitzer;'8 and Robinson and

Buchanan!®

are among some of the investigators who have discussed the effect of surface
tension on the bubble stiffness. The problem is to relate the pressure on the surface of the
bubble, which is associated with the change in bubble volume, to the pressure inside the

bubble. The stiffness k&’ is defined as

P}
k= - — [ 18(\]
v,
The pressure P, inside the bubble is
P o=ps+ 2o (58]
13 2 l{ J

1
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where [7 s the pressure on the bubble surface, o 1 the surface tension, and £, is the instan-

tancou- bubble radius. The polytropic equation of state for the gas nside the bubble is

20y %
P (P +—)(-—) (69
0
‘ 2o/ \V
Therefore,
Va7
20 20 0 20
3 L T
R A Y A WA (7ol
and
. an; (P %)(Vo)” 1 2 (71l
v, RJ\V,/ V. 3RV,
nFo 1) 20
[P § Qi S {71al
Vo \ FPoRo 3nlyiy
TIP() yPog (
B m e g = T1b
7 " Vya :
where
2 20
g:

Ly o
Pyl 3nP4yR,
Therefore, the correct expression for the resonant frequency f, is

3yPog i7el

Pza

When the bubbles are very large, the stiffness is the adiabatic stiffness and also surface ten-
s1on effects are negligible; consequently, the ratio ¢/a is unity and the resonant frequency
is given exactly by Minnaert's equation, .

Since damping is of prime importance at resonance, the thermal damping constant will
now be determined as & function of the resonant frequency. The dimensionless parameter
¢ Ry is written as

{431

/2 ”fo I3YP0‘1<"fo)
Pl = K V ) ,,,/OV )

3yFy ‘/F(]
d’llfo \/:npz[) (/o') fo_a 173al

19



where
3yP,

“4np,D,

The quantity F, for a given pressure, is a constant for the gas. Since the parameter F has the
dimensions of reciprocal time, it is sometimes called the characteristic freqcency of the gas
bubble. When quation (73a] is squared and the expression for « substituted, a quadratic
equation for ¢, R, results in terms of the resonant frequency f,, characteristic frequency F,
and ¢g. The solution of this quadratic equation is

3 ‘/ 16 Fg
b ft =—(y—1)( -———-——3-1) (74]
Oy 9y - 12 fo

Ry substituting the value of @ ,R,, as given by Equation [74], into Equation [60]:
1

@by, AU

= (80
k 2¢6,R,
1+
ty-1
the thermal damping conatant 8,; at resonance is found:
v.._m__ Fg -3 Gy-1)
©oby, % -1 /o 3(y-1)
th* =2 [75)
k

6_Fg _,
9y - 12 /o

As Pfriem used an incorrect expression for a, he derived an incorrect thermal damping con-
stant; his expression is

L E = - (6]
Y- g Y-

-Zl syt -2

Vs(y-n 7 b= =D T,

When the following values are used:

Py= 1x 108 dynes/ cm?,

o = 75 dynes/cm,
K, = 5.6 x 1075 cal/cm-sec-deg c,
y = 1.40
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Resonant Air Bubbles in Water

method outlined by Pfriem, agrees exactly with
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the curve of Wilhis as given in the report by

result obtained by Pfriem.

Spitzer. The thermal damping constant &, for

air bubbles 1n water larger than 15 microns radius and with resonant frequencies les: than 240
hilocycles per second 1s determired to within 1 percent by using Equation [75). When the
re~onant frequency 1~ small, Equation [75] for the thermal damping constant is replaced by the

<tmple equation:
W9 (y-1)
8 =5 —(L['— fo=441x 1074 Y, (seconds) (771

where [ 15 the resonant frequency in cycles per second. This simple relationship gives the
thernial damping constant to within 1 percent for air bubbles in water larger than 0.05 cm;

1.e., for air bubbles with resonant frequencies less than about 7 kilocyeles per second. Fqua-
tion [77] reveals that the thermal damping constant at low {requencies is proportional to the

square root of the resonant frequency.

RADIATION DAMPING

In a compressible liquid, a bubble excited into volume pulsations expends a portion of
it~ energy by radiating spherical sound waves. The bubble is considered as a simple scund
~ource; the bubble radius R is considered small compared to the wavelength A of the radiated
sound. Smith?® has calculated the radiatiun damping for gas bubbles in liquids. In order to
derive the expression for the radiation damping constant, the velocity potential for a simple

sinusoidal source in a compressible tiquid is stated:

.(L)Ul

crole - R/e,) (76}




where ¢, is the velocity of sound in the liquid,
I is the radial distance, and
;15 the complex amplitude of the change ir bubble volume .

Equation [52):

VO P e;ul Ve :7,(),_ 1) .
v=- = ]l - (u'/llfo coth {y, Ry) - 1 [52]
Yo  ulR?
v=1v, el {79}
defines v, as
vV, P’

[ 3(y-1
‘Ul = - —P— + —(y_-) (y’/l RO coth (l/llRo} - 1) [89!

22 QETT

Tha acoustic pressure s determined from the velocity potential by the following equation:

o 2
Q4 P Y,

Po=by 5y = eOU TR (81
On the bubble surface, the acoustic pressure is
p2“’2vl —jwRg /ey
p,=————¢l%, [82]
e 470,
or ,
v 27,2 3p3
B _”2“’ 1 G0t _o)lfo wlt; o R
Pa = "7 1-j—— - +j [82a]
0 €2 ol 33!

where on!y the first four terms ave kept in the expansion. The acoustic pressure on the bunble
surface 15 just the difference between the driving pressure on the surface of the liauid and

the change in pressure on the bubble surface associated with the chaage in bubble volume.
The change in pressure on the bubble surface is k%. Therefore,

Pa t K% =y 4 k€0 < - Por®t (53}
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2., 2p2 2 N4
Py ¢le"‘” w* ks Pyt el¢ /wl?o
- +
1

4aky c.‘,2‘2. in R, ¢,y
(84}
o i )
- > + k% el = — pel@t
3q1
02 31!
Since
V= je v, el @t [85]
and
¥= —mzvl et [86)
then

Py ( w? [3(;“) pyw (w 2y w3 R(;’

v+ v kv =~ Ped®t  [87)
4nl 4n kR,

201 [+ 3q1
cy 2! 2 c23.

For a large resonant air bubble in water with a resonant frequency of one kilocycle per second
and a radius of 9.33 cm, the term asolio/c2 is

woly 27Ry 4

c A

2

Therefore, the terms of higher order than wy R/ c, will be neglected and Equation {87] becomes

Py pro?
—_ ¥
477’20 47162

v+ k'v= - Pel®t (88}

\s long as the bubble radius is small compared to the wavelength of the radiated sound, it is
seen that the generalized mass term for the case of a compressible liquid is the same as the
corresponding term in Equation (17] where the liquid was considered incompressible.

P2

B+ bbb+ k%=~ Pel? (17a}
417/:'0

The radiation dissipation coefficient b_ , is

{89)




Therefore, the radiation damping constant at resonance is

N 1 baga  2aligla  Zmlonysio (o0]
g 4 = = e e e e = m—— — a0
ra Qraqg  wo My ¢y ey o

where m, is the generalized mass. The factor g takes into account tne effect of surface ten-
~ion whercas o describes the departure of the bubble stiffness from the adiabatic stiffness.
For larze hubbles, the ratio g.a is unity, and, since the quantity 2a R fy,." ¢, is a constant,

the radiation damping constant at resonance is independent of frequency.

VISCOUS DAMPING

The problem of a pulsating spherical bubble in a viscous, incompressible liquid will
now be treated; the viscous damping constant at resonance will be derived. Mallock?? in 1910,
and, later, Spitzer?2 and Poritsky?23 investigated this problem. For a pulsating bubble, the
effect of viscosity is perhaps difficult to visualize. Lamb2*4 states, *“The only condition under
which a liquid can be in motion without dissipation of energy by viscosity is that there must
he nowhere any extensions or contraction of linear elements; in other words, the motion must
consist of a translation and a rotation of the mass as a whole, as in the case of a rigid body.”
Mallock gives us a physical picture of the effect of viscosity on a pulsating bubble in an in-
compressible, viscous liquid by considering a small element of a spherical shell of liquid at
the bubble surface. This element has definite radial and lateral dimensions at the instant the
bubble radius is at its mean position, When the bubble eapands, the small fiquid element is
distorted; the radial thickness decreases while the lateral dimension increases. Likewise,
when the bubble contracts, the liquid element is again distorted; this time the radial thickness
increases and the lateral dimension decreases. Since the liquid is incompressible, the distor-
tion is not caused by a change in the volume of the liquid element but by viscous stresses.
Consequently, more energy is required to compress the bubble than is regained in the subse-
quent expansion.

In the presence of viscosity, momentum is transmitted from one region of the liquid to
anothor moving at a different velocity. .An element of liquid moving rapidly in a particular
direction tends to transmit its momentum to other elements of the liquid. The Navier-Stokes
equation of motion describes the force per unit volume acting on an infinitesimal element of
volume, at a point in a viscous liquid. The force per unit volume is due to the instantaneous
prexsure distribution of the surrounding liquid as in the case of a nonviscous liquid, and is
also due to the rate of change of momentum caused by the presence of viscosity. When there

are no external forces acting on each unit mass of the liquid, the equation of motion is

J > > i > 7
Py b;;lf-v I.'=_VI’04-§V(V-I?)-:-;1V’f (11




where
>

2 = radial velocity vector,

J > >
7 + R -V} R = acceleration vector,

[¢

p, = mean pressure, and

u = coefficient of viscosity.

\s the hiquid is considered to be incompressible, the divergence of the velocity V. i?vanishes
so that the second term on the right side of Equation [91] disappears. The only remaining
viscous term is p V2R . Since the motion of the liquid is irrotational, the velocity can be ex-
pressed as the gradient of a scalar velocity potential ©, and the last term on the right side of
Fquation [91) is written:

>
p VIR = v (-9 = —pp (V-9 Q)

> >
wVIR =y (V-R) =0

Therefore, there are no net viscous forces acting inside the liquid for the case of a pulsating
spherical bubble in an incompressible, viscous liquid. Due to the presence of viscosity,
momentum is transmitted through the liquid, but each infinitesimal element of liquid volume
receives just as much as it loses; therefore, there is no net viscous force acting on any ele-
ment of volume internal to the liquid. The Navier-Stokes equation is not applicable for dis-
cussing the effect of viscosity for pulsating spherical bubbles.

However, even though the net viscous forces in the liquid vanish, there are viscous
forces acting at the surface of the bubble where they exert an excess pressure. The net stress
dyadic S is written as?5

2 >
S=-Zuv-RIc2uX

[99)

where /15 the idem factor and X is the rate of pure strain dyadic. (The algebraic sign< conform
with the practice in clasticity of denoting a tension as positive and & pressure as negative.)
\s the liquid is incompressible, the divergence of the velocity is zero, and [.quation {92]
simplifies to:

S= 2“«\' I“?.]

Due to the radial motion and spherical symmetry, the principal direction~ of <tress and rate of

stran must be radial: this will be chosen to correspond o Sp and Xy, respecuvely:



SR=2"'\R “‘4]
I e rase of pure straip 3, is the gradient of the radial velocity.

> 9 [ i o
Ag=Vh==— {95]
R\, 02

!ierefore, the radial stress Sp at the bubble surface is

no
=2uXp = - — ¢
Spo=2ukp rh, 196}

:nid the equation of motion for the bubble system, when the effect of viscosity is included, is

Ve k== Pel®? {97i

onere

and

4:1(0

Therefore, the viscous damping constant at resonance is

b .
1 vis 8ﬂua Srf;t
= = {98]
vis Q”S wg my 3}'[ 0 3)'[) /V\/—

where 7 1s the factor which takes into account the effect of surface tension, and a is a factor
which describes the departure of the bubble stiffness from the adiabatic stiffness. The viscous

damping constant § __ is directly proportional to the resonant frequency /.

vis
The effect of viscosity is realized only ti rough the boundary condition at the surface
of the bubble, rather than through the Navier-Stokes equation wher. the resultant of the vis-

cosity stresses per unit volume at any point internal to the Jiquid vanishes.

TOTAL DAMPING CCNSTANT AT RESONANCE

The total damping for resonant air bubbles 1n water may be explained by losses origi-
nating from the energy which is transformed into heat during the polytrop.c compressions and

expanstons of the air in the buhble, the energy radiated in the form of spherical sound waves,

b
~



and the energy lost in viscous dissipation. The total damping constant §, at resonance 1s

1
80 = q = ‘Sth + arad + svis (25]
or
[ 16 Fg . @r-1
5 o 9()"" 1)2 fo 3()’ 1) 2ﬂfo RO Snpa ) [‘)9]
0=~ 16 55.7 - c, 3yFo9 -
9y - 1? fo
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Figure 4 — Theoretical Thermal, Radiation,
Viscous, and Total Damping Constants
for Resonant Air Bubbles in Water

EXPERIMENTAL METHODS

There are essentially four methods by which the damping constant 5, can be determineld
experimentally., Most of these methoads are indirect ones involving the calculation of the damp-

ing constant from certain measured acoustical properties of the bubbles.

SUCCESSIVE OSCILLATIONS?28

The method of successive oscillations is a dicect process for determining the damping
constant. The signal from a hydrophone, which is placed close to an oscillating bubble, 1~
amplified and applied tothe input terminals of acathode-ray oscilloscope; tho bubble pulse

appears on the screen as a damped sine wave, If the amplitude of successive osctllation 1y

27



plotteil on ~emi-log paper as a function of the cycle number of oscillation, the logarithmie de-
crement, and, therefore, the reciprocal @ can be determined fror the slope. The resonant fre-
quency of the pulsating bubble is determined by applying a signal of known frequency to the

input of the oscilloscope and measuring the time scale across the screen,

#IDTH OF THE RESONANCE RESPONSE *"*%%?

On page 5, the ¢ of the bubble system was defined in terms of the resonant frequency
and the two frequencies above and below at which the average sound power of the bubble had
decreased to one-half its resonance value. Since the power is proportional to the square of
cither the radial velocity or the radial displacement, the damping constant 5, can be found by
plotting the square of either of these parameters as a function of the frequency. The amplitude
of oscillation of large gas bubbles can be found using a photoelectric method, and, for small
bubbles, the radial velocity can be measured using a kind of velocity-ribbon microphone,

1. Photoelectric Method. \ single gas bubble oscillating to a sonic excitatioy is illumi-
nated optically and the scattered light measured by a photoelectric cell. The change in cross
section of the bubble image modulates the quantity of light received at the photocell. The
alternating current generated in the circuit of the photocell, by the change in the bubble cross
section, is amplified and recorded on a suitable recorder. By varying the sonic excitation
frequency and noting the changes in the bubble cross section, the band width and the resonant
frequency can be determined.

2, Ribbon Microphone Methed. A single bubble is caught on a small wax sphere fastened
to a platinum thread which is placed between the poles of an clectromagnet, The bubble oscil-
lations are produced by a constant frequency magnetostriction projector. \s the bubble oscil-
lates, the platinum thread is carried along with the oscillations and this motion of the platinum
thread produces an alternating EMF which is proportional to the radial velocity of the gas
bubble. This arrangement represents a sort of ribbon microphone. Since the generalized mass
is greater than the vibrating part of the mass of the thread or the wax, the platinum wire and
the wax are assumed to exert negligible influences or the resonant frequency. The bubble is
allowed to grow slowly and its diameter measured with a microscope; the voltage produced by
the ribbon microphone traverses a maximum as the diameter of the bubble increases. There-

fore, the resonant frequency and damping constant can be determined.

STANDING-WAVE RATIOS 303132

\ single gas bubble is allowed to rise {reely in u liquid-filled tube and oscillate under
the influence of a plane progressive sound wave. The diameter of the tube is less than half
a wavelength <o that the =ound pressure i< constant over the cross section of the tube. Dis-
turbances by reflection of this sound wave from the free surface are prevented by an absorp-

tion device or by using a pulse technique. The sound energy £, which is radiated by a
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'rin-ducer at the lower end of the tube, is partly reflected by the Fubble £ and recorded by
a robe hy Irophone arranged between the transducer and the bubble. The damping constant
"o Ctn be measured from the relative reflection coefficient (K, ’I'.'i)v’ of a bubble oscillating

at it= sesonant {requency:

o = [{0 Er ‘/3 I‘)O(?'r) [100]
O0g=ViZY¥r=Vvi—i-—
zVE, Z\y;

where 7 is the radius of the tube, and p, and p, are the sound pressures of the incident and
reflected waves, respectively. However, the energy of the reflected signal cannot be referred
to that of the direct signal because of friction losses occuring in the tube. In order to obtain
the corresponding energy of the direct signal, the energy of the reflected pulse is measured
when the bubble is replaced by an obstacle covering the entire cross section of the tube, 2
large bubble, for instance. Therefore, the damping constant can be measured from the standing-
wave ratio, and the resonant frequency is that frequency of the plane progressive sound wave
which produces the maximum oscillation for the bubble.

RESONANCE ABSORPTION****

Thi= method of determining the damping constant depends upon measuring the attenuation
uf sound by a screen of bubbles. For bubbles of a single size, t* » attenuation through a bubble
-creen is a maximum at the resonant frequency of the bubbles. A projector and transmission
I vdrophone are located on opposite sides of the bubble screen. Each instrument is faced to-
wrd the oth - and the line joining them, at the peint of intersection with the bubble screen,

f rr - in angle ¢ with the normal to the screen. In order to obtain data as to the distribution
of Iubhle~ according to size, the rate of rise of bubbles, which is a function of the hubble
radiu-, 1~ Jetermined. If only a very short burst of bubbles is allowed to escape from the bub-
hle producer- and the resultant screen is observed at a height 4 and time ¢ later, the screen
mtaing only those bubbles whose rate of rise is A,'t. When the bubbles are allowed to rise
freely but in these definite bursts or pulses, attenuation measurements versus time elapsed
ifter the tmitiation of the pulse bubble screen are made using the transmission hydrophone.
This method is repeated for several projector frequencies. Carstensen and Foldy3S give the

resonant damping constant 8, in terms of the attenuation A:

RELINEY
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where ng 18 the average number of bubbles per unit volume,

d is the thickness of the bubble screen,

R’is the off-resonant bubble radius, and

i 2
Bef—m <1
(#)?
in deriving Equation [101]), Carstensen and Foldy made some assumptions about the off-
resonance behavior of the damping constant. They assumed, for a bubble screen containing
hubbles of essentially uniform size, that the off-resonance damping constant equals 'It’o,’[x")350

where 8, is the resonant damping constant, The distribution in size, space, and number of
the hubbles must be known to determine the resonant damping constant.

COMPARISON OF THEORY AND EXPERIMENTAL RESULTS

The theoretical damping constant and the experimental values for the damping constants
are plotted as a function of the resonant frequency in Figure 5. Therefore, Figure 5 zives an
indication as to how well the axperimental results agree with the theory of damping.

Meye: and Tamm36 have used the width of the resonance response method to obtain the
damping constaat; these results are extremely high. This high damping constant may be due
to the particular conditions of the experiment. In using the ribbon microphone, considerable
damping may have been due to the oscillation of the platinum thread in the magnetic field.

In addition, the experimenters themselves state the bubbles appeared dull and blucred near
the resonance point; consequently, the diameters of the bubbles could not have been measured
accurately with a microscope, which would affect the determination of the resonant frequency.
The damping constant for large bubbles was determined using the photoelectric mothod. For
this procedure, Meyer and Tamm, and later Lauer,37 used a thin wire annulus to hold the bub-
bles and prevent them fron rising to the surface while the measurements were being made.
Indeed, the high damping constants found by Meyer and Tamm may be due to the wire annuli
adding to the Jdamping of the bubble system. At low frequencies, the damping coastants
measured by Lauer are about 25 percent higher than the theoretical prediction.

Bauer, formerly of the David Taylor Model Basin and now at Reeves Instrument Com-
pany, used the successive oscillation method for determining the damping constant. In this
experiment, the damping constant for a free bubble was mea«ured; therefore, there is no
additional damping due to a bubble holder. The bubble was formed at a nozzle; the velume
pulzation~ started just as the bubbie closed and separated from the nozzle. The urpubiished
damping constant measurements of Bauer are about 20 percent higher than the theoretical

prediction.
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Figure 5 — Theoretical and Experimental Values of the Damping Constant for
Resonant Air Bubbles in Water

Points are from faired curves through the experimenter's data.

Symbol Expernimenter Method

X Meyer and Tamm Width of Resonance Response
o Carstensen and Foldy | Resonance Absorption

a Bauer Successive Oscillations

o Lauer Width of Resonance Response
[ 3 Exner Standing-Wave Rat.os

A Exner and Hampe Standing-Wave Ratios

] Haeske Standing-Wave Ratios

The method of standing-wave ratios was used by Exner,33 Exner and Hampe,39 and
lineske,*? to determine the resonant damping constant; the results of Exner, and Exner and
Hampe agree very well with the theoretical curve. According to the theory, the viscous damp-
ing becomes important around 200 kilocycles per second; Haeske has measured the damping
constant in this (requency range. At resonant frequencies of 200 and 300 kilocycles por soc-
ond, the damping constants determined by Haeske are 4 to 8 percent lower than the theoretical
curve. \hen the theoretical damping constant curve does not include the viscous damping con-
stant, but only the thermal and radiation damping constants, the experimental results of Haeske
are 4 to 8 percent higher than the theoretical curve. However, the measurements by Haeske
are only accurate to within 10 percent. Therefore, a definite conclusiun cannot be formed as
to whether viscous damping contributes or does not contribute o the total damping. Also, the
value for the coefficient of viscosity, which is used in determining the theoretical viscuus
damping constant, was obtained experimentally for steady flow. At high frequencios, the value
for the coefficient of viscosity may be considerably smaller than for the steady-flow case.

This subject is now being investigated. Some additional damping experiments in thi= frequency
range using a different experimental method may also decide this dilemma, Above 40 kilo-
cycles per second, Exner an” Hampe very often found ‘‘anomalous’ bubbles with much lower
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damping con-tant~ than the regular bubbles. The measured resonant frequency did not agree

with the frequency calculated from the measured diameter of the ' sbble when Equation [72].

f ! 3 ’1’00 {72]
ip = 2’7[{0 ot 02

was used. The “‘anomalous’’ bubbles have higher frequencies thaa this equation predicts.

It was noted that in almest all cases the “‘anomalous’’ bubbles hal dust particles on their
surfaces. This increase in res.onant frequency could not be explained by a decrease in the
generalized mass as the dust particles would add to this mass, and there does not seem to be
a logical explanation for a possible increase in the stiffness. Strasberg?! tentatively sugees-
ted that this behavior may perhaps be associated with surface oscillations of the bubble since
for very small bubbles the frequency of surface oscillations may be of the same order as the
frequency of ordinary volume pulsations. The excitation of surface oscillations by sanic
exaeitation may require some nonsymmetry supplied by the dust particles. The dampuiz asso-
ciated with surface oscillations 1s not the same as the damping associated with volume pulsa-
tions, and this would account for the different damping constant measured for ‘‘anomaious’
bubbles. When !laeske perfcrmed his experiment, he took extreme care to obtain clean exper-
1mental conditions, and found no trace of ‘‘anomalous’’ bubbles in the 100-300 kilocycles per
second range.

Carstensen and Foldy*2 used the resonance absorption method to determine the damping
constant. The damping constant results are very high. The authors admit they have conly a
small amount of evidence to indicate that the off-resonance damping constant equals(l{o/[g’)350,
The off-resonance damping constant was used in deriving an expression for the resonant damp-
ing constant in terms of the attenuation. In this method, a large number of bubbles are present,
and the exaact distribution in size, space, and number is difficult to determine. Also, there may
be interaction between individual bubbles; these interactions are survly complex and difficult
to determine. The curve for the resonance damping constant as a function of the resonant fre-
quency i> certainly broadened by the presence of bubbles having different resonant frequencies.
"Towever, this broadening is difficult to calculate since the exact bubble distribution in size,
space, and number is not known to a sufficient degree.

Excluding the results obtained by Meyer and Tamm, and Carstensen and Foldy, the
experimental damping constants agree very well with the theoretical curve. The damping con-
stant- at low resonant frequencies obtained by Bauer and Lauer, using different experimental
methods, agree quite well with each other, but their results are higher than the theory predicts.
\~ mentioned on page 1, the resonant frequency is only shaltly different for nonspherical
bubbles . However, the viscous damping theory assumed spherical bubbles where the motion
1~ completely radial. Perhaps there is considerably more viscous damping when the bubble 1s

shwehtly nonspherical. In addition to volume pulsations, there are also osciliations in the



shape of the bubble. Recent work* indicates that for large amplitude radial julsations, there
1s some coupling hetween the radial motion and the shape oscillation  This may result in the
removal of some of the energy associated with the pulsation. At high frequencies, the exper-

imental data of Haeske do not confirm whether or not viscous damping is important.

SUMMARY AND CONCLUSION

Bubbles excited to volume pulsations have a polytropic oquation of state for the gas
which results in a phase difference between the change in pressure per unit original pressure
and tho change in volume per unit original volume. Therefore, the work done in compressing
the bubble is more than the work done by the bubble in expanding; this difference in the work
done represents a net flow of heat energy into the liquid. When an error in the derivation by
Pfriem for thig thermal damping is corrected, the curve for the thecretical thermal damping
constant at resonance agrees oxactly with Willis’ theoretical curve as given in the report by
Spitzer.

Pulsating bubbles expend « portion of their energy in the form of spherical sound waves.
The radiation damping is just this loss of energy in the form of sound waves.

Tho effect of viscosity on pulsating bubbles in an incompressible, viscous liquid is
understood through the stress equations and the boundary conditiong, rather than the Navier-
Stokes equation of motion. At the bubble surface, there aro viscous forces acting which exert
an excess pressure; this results in the dissipation of energy.

Iixperimental results verify that the damping at resonance is due to thermal and radia-
tion, and possibly viscous damping. The discrepancies between theory and experimental re-
sults found in measurements by Meyer and Tamm, and Carstensen and Foldy are due to the
particular conditions of ti o experiments. The small discrepancy between the theory and the
results of Bauer and Lauer may be due to an increase in viscous damping caused by the non-
spherical shape of the gas bubble, and the possibility that there is some coupling between
the radial motion and the shape oscillations which may remove some of the energy associated
with the puisation.
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